Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.407
Filter
1.
Org Biomol Chem ; 22(18): 3584-3588, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38623862

ABSTRACT

Asp-based lactam cyclic peptides are considered promising drug candidates. However, using Fmoc solid-phase peptide synthesis (Fmoc-SPPS) for these peptides also causes aspartimide formation, resulting in low yields or even failure to obtain the target peptides. Here, we developed a diaminodiacid containing an amide bond as a ß-carboxyl-protecting group for Asp to avoid aspartimide formation. The practicality of this diaminodiacid has been illustrated by the synthesis of lactam cyclic peptide cyclo[Lys9,Asp13] KIIIA7-14 and 1Y.


Subject(s)
Amides , Aspartic Acid , Lactams , Peptides, Cyclic , Peptides, Cyclic/chemical synthesis , Peptides, Cyclic/chemistry , Lactams/chemistry , Lactams/chemical synthesis , Amides/chemistry , Amides/chemical synthesis , Aspartic Acid/chemistry , Aspartic Acid/chemical synthesis , Aspartic Acid/analogs & derivatives , Solid-Phase Synthesis Techniques , Molecular Structure
2.
Macromol Rapid Commun ; 45(3): e2300524, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37903330

ABSTRACT

Polyamides (PA) are among the most essential and versatile polymers due to their outstanding characteristics, for example, high chemical resistance and temperature stability. Furthermore, nature-derived monomers can introduce hard-to-synthesize structures into the PAs for unique polymer properties. Pinene, as one of the most abundant terpenes in nature and its presumable stability-giving bicyclic structure, is therefore highly promising. This work presents simple anionic ring-opening polymerizations of ß-pinene lactam (AROP) in-bulk and in solution. PAs with high molecular weights, suitable for further processing, are produced. Their good mechanical, thermal (Td s up to 440 °C), and transparent appearance render them promising high-performance biomaterials. In the following, the suitability of different initiators is discussed. Thereby, it is found that NaH is the most successful for in-bulk polymerization, with a degree of polymerization (DP) of about 322. For solution-AROP, iPrMgCl·LiCl is successfully used for the first time, achieving DPs up to about 163. The obtained PAs are also hot-pressed, and the dynamic mechanical properties are analyzed.


Subject(s)
Bicyclic Monoterpenes , Lactams , beta-Lactams , Lactams/chemistry , Nylons/chemistry , Molecular Weight , Polymers/chemistry , Forests , Polymerization
3.
Bioorg Med Chem Lett ; 97: 129570, 2024 01 01.
Article in English | MEDLINE | ID: mdl-38036273

ABSTRACT

Small molecule activators of protein kinase C (PKC) have traditionally been classified as either tumor promoters or suppressors. Although bryostatin 1 has well established anti-cancer activity, most natural products that target the PKC regulator domain exhibit tumor promotion properties. In this study, we examine a focused library of indolactam analogues in cell-based assays to establish the structural features of the scaffold that enhance bryostatin 1-like activity. These systematic biological assessments identified specific indole substitution patterns that impart diminished tumor promotion behavior in vitro for indolactam analogues, while still maintaining nanomolar potency for PKC.


Subject(s)
Lactams , Neoplasms , Protein Kinase C , Humans , Bryostatins/pharmacology , Bryostatins/chemistry , Bryostatins/metabolism , Lactones , Protein Kinase C/metabolism , Tetradecanoylphorbol Acetate , Lactams/chemistry , Lactams/pharmacology
4.
Chem Biodivers ; 21(2): e202301672, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38116924

ABSTRACT

Two rare jatropham lactam derivatives, named as fulvanines J-K (1-2), together with six known pyrrole alkaloids, 5,5'-oxydi(3-methyl-3-pyrrolin-2-one) (3), (-)-5-hydroxy-3-methyl-3-pyrrolin-2-one (jatropham) (4), (±)-5-O-methyljatropham (5), perlolyrine (6), butyl-2-formyl-5-(hydroxymethyl)-1H-pyrrole-1-butanoate (7), and hemerocallisamine II (8), were isolated from the flower of Hemerocallis fulva. Their structures were elucidated on the basis of spectroscopic methods and compared with the NMR spectra data in the literature. All compounds were evaluated for their anti-complementary activity in vitro, and compounds 1, 4, and 6 exhibited anti-complement effect with CH50 values from 0.61 to 1.42 mM.


Subject(s)
Alkaloids , Hemerocallis , Hemerocallis/chemistry , Molecular Structure , Lactams/pharmacology , Lactams/chemistry , Alkaloids/pharmacology , Alkaloids/chemistry , Pyrroles/pharmacology , Pyrroles/chemistry
5.
ACS Chem Biol ; 18(11): 2343-2348, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37870408

ABSTRACT

Adenylation enzymes activate amino acid substrates to aminoacyl adenylates and generally transfer this moiety onto the thiol group of the phosphopantetheine arm of a carrier protein for the selective incorporation of aminoacyl building blocks in natural product biosynthesis. In contrast to the canonical thioester-forming adenylation enzymes, the amide-forming adenylation enzyme VinM transfers an l-alanyl group onto the amino group of the aminoacyl unit attached to the phosphopantetheine arm of the carrier protein VinL to generate dipeptidyl-VinL in vicenistatin biosynthesis. It is unclear how VinM distinguishes aminoacyl-VinL from VinL for amide bond formation. Herein we describe structural and biochemical analyses of VinM. We determined the crystal structure of VinM in complex with VinL using a designed pantetheine-type cross-linking probe. The VinM-VinL complex structure in combination with site-directed mutagenesis analysis revealed that the interactions with both the phosphopantetheine arm and VinL are critical for the amide-forming activity of VinM.


Subject(s)
Amides , Aminoglycosides , Lactams , Macrolides , Pantetheine/analogs & derivatives , Lactams/chemistry , Carrier Proteins/metabolism , Peptide Synthases/metabolism , Substrate Specificity
6.
Org Lett ; 25(23): 4303-4307, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37267080

ABSTRACT

A new palladium-catalyzed multicomponent dearomatization of arylamines with CO and propargylic acetates for the synthesis of bridged polycyclic lactams is described. This method allows double annulation at the ipso and para positions of the amino group to form four new bonds, three C-C bonds and one C-N bond. DFT calculations and experimental studies indicate that the efficient formation of the allenecarboxanilide intermediate is the key step to achieve the dearomative transformation.


Subject(s)
Lactams , Palladium , Palladium/chemistry , Lactams/chemistry , Catalysis , Cyclization , Acetates/chemistry , Amines
7.
Org Lett ; 25(27): 4974-4979, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37294587

ABSTRACT

A temperature-regulated catalyst-free photoinduced selective carbene C-H insertion strategy was realized to efficiently synthesize spiro-ß-lactones and -lactams, which hold considerable promise in drug discovery programs. The reaction shows broad applicability across a range of α-diazo esters and amides with various ring sizes and substituents and has been demonstrated to successfully achieve the late-stage spirocyclization of natural/bioactive compounds. The obtained products could be transformed into spiro-oxetanes, -azetidines, and -cyclopropanes, privileged scaffolds with broad utility in medicinal chemistry.


Subject(s)
Lactams , Lactones , Lactams/chemistry , Temperature , Lactones/chemistry , Amides
8.
Bioconjug Chem ; 34(5): 934-940, 2023 05 17.
Article in English | MEDLINE | ID: mdl-37140963

ABSTRACT

The purpose of this study was to evaluate the effect of linkers on tumor targeting and biodistribution of [99mTc]Tc(CO)3-NOTA-PEG2Nle-CycMSHhex {[99mTc]Tc(CO)3-1,4,7-triazacyclononane-1,4,7-triyl-triacetic acid-polyethylene glycol-Nle-c[Asp-His-d-Phe-Arg-Trp-Lys]-CONH2} and [99mTc]Tc(CO)3-NOTA-AocNle-CycMSHhex {[99mTc]Tc(CO)3-NOTA-8-aminooctanoic acid-Nle-CycMSHhex} on B16/F10 melanoma-bearing mice. NOTA-PEG2Nle-CycMSHhex and NOTA-AocNle-CycMSHhex were synthesized and radiolabeled with [99mTc]Tc via the {[99mTc]Tc(CO)3(OH2)3}+ intermediate. The biodistribution of [99mTc]Tc(CO)3-NOTA-PEG2Nle-CycMSHhex and [99mTc]Tc(CO)3-NOTA-AocNle-CycMSHhex was determined on B16/F10 melanoma-bearing C57 mice. The melanoma imaging property of [99mTc]Tc(CO)3-NOTA-PEG2Nle-CycMSHhex was determined on B16/F10 melanoma-bearing C57 mice. [99mTc]Tc(CO)3-NOTA-PEG2Nle-CycMSHhex and [99mTc]Tc(CO)3-NOTA-AocNle-CycMSHhex were readily prepared with more than 90% radiochemical yields and exhibited MC1R-specific binding on B16/F10 melanoma cells. [99mTc]Tc(CO)3-NOTA-PEG2Nle-CycMSHhex exhibited a higher tumor uptake than [99mTc]Tc(CO)3-NOTA-AocNle-CycMSHhex at 2, 4, and 24 h postinjection. The tumor uptake of [99mTc]Tc(CO)3-NOTA-PEG2Nle-CycMSHhex was 13.63 ± 1.13, 31.93 ± 2.57, 20.31 ± 3.23, and 1.33 ± 0.15% ID/g at 0.5, 2, 4, and 24 h postinjection, respectively. The tumor uptake of [99mTc]Tc(CO)3-NOTA-PEG2Nle-CycMSHhex was 1.6 and 3.4 times the tumor uptake of [99mTc]Tc(CO)3-NOTA-AocNle-CycMSHhex at 2 and 4 h postinjection, respectively. Meanwhile, the normal organ uptake of [99mTc]Tc(CO)3-NOTA-PEG2Nle-CycMSHhex was lower than 1.8% ID/g at 2 h postinjection. The renal uptake of [99mTc]Tc(CO)3-NOTA-PEG2Nle-CycMSHhex was only 1.73 ± 0.37, 0.73 ± 0.14, and 0.03 ± 0.01% ID/g at 2, 4, and 24 h postinjection, respectively. [99mTc]Tc(CO)3-NOTA-PEG2Nle-CycMSHhex showed high tumor to normal organ uptake ratios at 2 h postinjection. Single-photon emission computed tomography imaging revealed that the B16/F10 melanoma lesions could be clearly visualized by [99mTc]Tc(CO)3-NOTA-PEG2Nle-CycMSHhex at 2 h postinjection. Overall, the high tumor uptake and low kidney uptake of [99mTc]Tc(CO)3-NOTA-PEG2Nle-CycMSHhex highlighted its potential for melanoma imaging and warranted the future evaluation of [188Re]Re(CO)3-NOTA-PEG2Nle-CycMSHhex for melanoma therapy.


Subject(s)
Lactams , Melanoma, Experimental , Animals , Mice , Lactams/chemistry , alpha-MSH/chemistry , alpha-MSH/metabolism , Tissue Distribution , Melanoma, Experimental/metabolism , Tomography, Emission-Computed, Single-Photon , Cell Line, Tumor , Mice, Inbred C57BL , Radiopharmaceuticals/chemistry
9.
Molecules ; 28(4)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36838972

ABSTRACT

A new route to bicyclic γ-lactams was found, which was proposed as a three-component cyclization of ethyl trifluoropyruvate with methyl ketones and 1,2-, 1,3-amino alcohols. As a result, a series of trifluoromethyl-substituted tetrahydropyrrolo [2,1-b]oxazol-5-ones and tetrahydropyrrolo[2,1-b][1,3]oxazine-6-ones was synthesized, in which the substituent at the nodal carbon atom was varied. The introduction of a twofold excess of ethyl trifluoropyruvate in reactions with amino alcohols and acetone made it possible to obtain the same bicycles, but functionalized with a hydroxyester fragment, which are formed due to four-component interactions of the reagents. Transformations with 2-butanone and aminoethanol lead predominantly to similar bicycles, while an analogous reaction with aminopropanol gives N-hydroxypropyl-2,3-dihydropyrrol-5-one. Almost all bicycles are formed as two diastereomers, the structure of which was determined using 1H, 19F, 13C NMR spectroscopy, including two-dimensional experiments and XRD analysis. A domino mechanism for the formation of tetrahydropyrrolo[2,1-b]oxazacycles was proposed, which was confirmed by their stepwise synthesis through the preliminary preparation of the aldol and bis-aldol from ethyl trifluoropyruvate and methyl ketones.


Subject(s)
Acetone , Lactams , Lactams/chemistry , Amino Alcohols , Ketones/chemistry , Stereoisomerism , Molecular Structure
10.
ACS Chem Biol ; 18(2): 396-403, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36692171

ABSTRACT

Proteasome inhibitors with γ-lactam structure, such as lactacystin and salinosporamide A, have been isolated from actinomycetes and have attracted attention as lead compounds for anticancer drugs. Previously, we identified a unique enzyme TAS1, which is the first reported fungal NRPS-PKS hybrid enzyme, from the filamentous fungus Pyricularia oryzae for the biosynthesis of a mycotoxin tenuazonic acid, a tetramic acid compound without γ-lactam structure. Homologues of TAS1 have been identified in several fungal genomes and classified into four groups (A-D). Here, we show that the group D TAS1 homologues from two filamentous fungi can biosynthesize γ-lactam compounds, taslactams A-D, with high similarity to actinomycete proteasome inhibitors. One of the γ-lactam compounds, taslactam C, showed potent proteasome inhibitory activity. In contrast to actinomycete γ-lactam compounds which require multiple enzymes for biosynthesis, the TAS1 homologue alone was sufficient for the biosynthesis of the fungal γ-lactam compounds.


Subject(s)
Actinobacteria , Mycotoxins , Proteasome Inhibitors/pharmacology , Lactams/chemistry , Peptide Synthases/chemistry
11.
Molecules ; 27(22)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36431796

ABSTRACT

One of the goals of diversity-oriented synthesis is to achieve the structural diversity of obtained compounds. As most biologically active compounds are chiral, it is important to develop enantioselective methods of their synthesis. The application of kinetic resolution in DOS is problematic because of low efficiency (max. 50% yield) and many purification steps. The further derivatization of kinetic resolution products in DOS leads to the formation of a narrow library of compounds of the same stereochemistry. To overcome these limitations, we present a new concept in which the kinetic resolution is combined, the subsequent reaction of which in a one-pot protocol leads to the simultaneous formation of two skeletally and enantiomerically diverse platform molecules for DOS. Their further derivatization can gain access to a double-sized library of products in respect to a classical approach. The validity of our concept was evidenced in enzymatic kinetic resolution followed by a ring-closing metathesis cascade. From racemic carboxylic acid ester, a simultaneous formation of enantiopure lactones and lactams was achieved. These compounds are important building blocks in organic and medicinal chemistry and until now were synthesized in separate procedures.


Subject(s)
Lactams , Lactones , Lactams/chemistry , Lactones/chemistry , Kinetics , Cyclization
12.
Chem Soc Rev ; 51(19): 8258-8275, 2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36047318

ABSTRACT

Ring opening polymerization (ROP) of lactams is a highly efficient and versatile method to synthesize polyamides. Within the last ten years, significant advances in polymerization methodology and monomer diversity are ushering in a new era of polyamide chemistry. We begin with a discussion of polymerization techniques including the most widely used anionic ring opening polymerization (AROP), and less prevalent cationic ROP and enzyme-catalyzed ROP. Next, we describe new monomers being explored for ROP with increased functionality and stereochemistry. We emphasize the relationships between composition, structure, and properties, and how chemists can control composition and structure to dictate a desired property or performance. Finally, we discuss biomedical applications of the synthesized polyamides, specifically as biomaterials and pharmaceuticals, with examples to include as antimicrobial agents, cell adhesion substrates, and drug delivery scaffolds.


Subject(s)
Anti-Infective Agents , Nylons , Biocompatible Materials , Caprolactam/analogs & derivatives , Lactams/chemistry , Nylons/chemistry , Pharmaceutical Preparations , Polymerization , Polymers
13.
Eur J Med Chem ; 243: 114735, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36122550

ABSTRACT

A series of ferrocenyl-containing γ-hydroxy-γ-lactam tetramates were prepared in 2-3 steps through ring opening-ring closure (RORC) process of γ-ylidene-tetronate derivatives in the presence of ferrocenyl alkylamines. The compounds were screened in vitro for their antiplasmodial activity against chloroquine-sensitive (3D7) and chloroquine-resistant (W2) clones of P. falciparum, displaying activity in the range of 0.12-100 µM, with generally good resistance index. The most active ferrocene in these series exhibited IC50 equal to 0.09 µM (3D7) and 0.12 µM (W2). The low cytotoxicity of the ferrocenyl-containing γ-hydroxy-γ-lactam tetramates against Human Umbilical Vein Endothelial (HUVEC) cell line demonstrated selective antiparasitic activity. The redox properties of these ferrocene-derived tetramates were studied and physico-biochemical studies evidenced that these derivatives can exert potent antimalarial activities via a mechanism distinct from ferroquine.


Subject(s)
Antimalarials , Malaria, Falciparum , Humans , Metallocenes/pharmacology , Antimalarials/chemistry , Plasmodium falciparum , Lactams/pharmacology , Lactams/chemistry , Structure-Activity Relationship , Malaria, Falciparum/drug therapy , Chloroquine/therapeutic use
14.
Acc Chem Res ; 55(18): 2708-2727, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36043467

ABSTRACT

Asymmetric organocatalysis has been considered to be an efficient and reliable strategy for the stereoselective preparation of optically active chemicals. In particular, chiral tertiary amines as Lewis base organocatalysts bearing core structures including quinuclidine, dimethylaminopyridine (DMAP), N-methylimidazole (NMI), amidine, etc. have provided new and powerful tools for various chemical transformations. However, due to the limitations in structural complexity, synthetic difficulty, low catalytic efficiency, and high cost, the industrial application of such catalysts is still far from being widely adopted. Therefore, the development of new chiral tertiary amine catalysts with higher activity and selectivity is greatly desired.In order to address the contradiction between activity and selectivity caused by the ortho group, a bicyclic imidazole structure bearing a relatively large bond angle ∠θ was designed as the skeleton of our new catalysts. 6,7-Dihydro-5H-pyrrolo[1,2-a]imidazole (abbreviated as DPI) and 5,6,7,8-tetrahydroimidazo[1,2-a]pyridine (abbreviated as TIP) are two of the utilized skeletons. In addition to obtaining satisfactory catalytic activity, excellent enantioselectivity would also be expected because the stereocontrol R group is neither far nor close to the catalytic active site (sp2-N atom) and is adjustable. Based on this skeleton, a family of chiral bicyclic imidazole catalysts were easily prepared and successfully applied in several enantioselective reactions for the synthesis of a variety of valuable chiral compounds.6,7-Dihydro-5H-pyrrolo[1,2-a]imidazole (abbreviated as DPI) is the predominantly utilized skeleton. First, HO-DPI, the key intermediate of the designed chiral bicyclic imidazole catalysts, could be efficiently synthesized from imidazole and acrolein, then separated by kinetic resolution or optical resolution. Second, Alkoxy-DPI, the alkyloxy-substituted chiral bicyclic imidazole catalysts, were synthesized by a one-step alkylation from HO-DPI. This type of catalyst has been successfully applied in asymmetric Steglich rearrangement (C-acylation rearrangement of O-acylated azlactones), asymmetric phosphorylation of lactams, and a sequential four-step acylation reaction. Third, Acyloxy-DPI, the acyloxy-substituted chiral bicyclic imidazole catalysts, were synthesized with a one-step acetylative kinetic resolution from racemic HO-DPI or acylation from enantiopure HO-DPI. The catalyst AcO-DPI has been successfully applied in enantioselective Black rearrangement and in direct enantioselective C-acylation of 3-substituted benzofuran-2(3H)-ones and 2-oxindoles. Fourth, Alkyl-DPI was synthesized via a two-step reaction from racemic HO-DPI and separated easily by resolution. The catalyst Cy-DPI has been successfully applied in dynamic kinetic resolution of 3-hydroxyphthalides through enantioselective O-acylation. Cy-PDPI was synthesized through a Cu-catalyzed amidation from Cy-DPI and successfully applied in the kinetic resolution of secondary alcohols with good to excellent enantioselectivities. Finally, the carbamate type chiral bicyclic imidazole catalysts, Carbamate-DPI, were readily synthesized from HO-DPI, and the catalyst Ad-DPI bearing a bulky adamantyl group was successfully applied in the synthesis of the anti-COVID-19 drug remdesivir via asymmetric phosphorylation. Alongside our initial work, this Account also introduces four elegant studies by other groups concerning asymmetric phosphorylation utilizing chiral bicyclic imidazole catalysts.In summary, this Account focuses on the chiral bicyclic imidazole catalysts developed in our group and provides an overview on their design, synthesis, and application that will serve as inspiration for the exploration of new organocatalysts and related reactions.


Subject(s)
Benzofurans , Lewis Bases , Acrolein , Amidines , Amines , Carbamates , Catalysis , Imidazoles/chemistry , Lactams/chemistry , Oxindoles , Pyridines , Quinuclidines , Stereoisomerism
15.
J Org Chem ; 87(16): 11204-11217, 2022 08 19.
Article in English | MEDLINE | ID: mdl-35930660

ABSTRACT

The α-methylene-γ-lactam offers promise as a complementary warhead for the development of targeted covalent inhibitors. However, an understanding of the factors governing its electrophilic reactivity is needed to promote the development of lead compounds utilizing this motif. Herein we synthesize a series of N-aryl-substituted α-methylene-γ-lactams installed within the framework of a bioactive guaianolide analog. To determine the effects of the guaianolide structure on the electrophilic reactivity, these compounds were reacted with glutathione under biomimetic conditions, and the rate constants were measured. A linear free-energy relationship was observed with the Hammett parameter of the N-aryl group within the cis- or trans-annulated isomeric series of compounds. However, the trans-annulated compounds exhibited a ca. 10-fold increase in reactivity relative to both the cis-annulated compounds and the corresponding N-arylated 3-methylene-2-pyrrolidinones. Density functional theory calculations revealed that the reactivity of the trans-annulated stereoisomers is promoted by the partial release of the ring strain of the fused seven-membered ring in the thio-Michael addition transition state.


Subject(s)
Lactams , Sulfhydryl Compounds , Glutathione , Lactams/chemistry , Molecular Structure , Stereoisomerism , Sulfhydryl Compounds/chemistry
16.
Org Biomol Chem ; 20(32): 6384-6393, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35861618

ABSTRACT

An unprecedented organocatalytic process involving the asymmetric addition of azide to meso-anhydrides has been developed, promoted by novel sulfamide-substituted Cinchona alkaloid-based catalysts. Readily available glutaric anhydrides can be smoothly converted to enantioenriched hemi-acyl azides and from there to either γ-amino acids or γ-lactams.


Subject(s)
Cinchona Alkaloids , Lactams , Amino Acids/chemistry , Anhydrides/chemistry , Azides , Catalysis , Cinchona Alkaloids/chemistry , Lactams/chemistry
17.
Curr Med Chem ; 29(41): 6218-6227, 2022.
Article in English | MEDLINE | ID: mdl-35850648

ABSTRACT

The most relevant lipase-catalyzed strategies for the synthesis of pharmaceutically important cyclic and acyclic α-, ß- and γ-amino carboxylic acid enantiomers through hydrolysis of the corresponding amino carboxylic esters and lactams, over the last decade are overviewed. A brief Introduction part deals with the importance and synthesis of enantiomeric amino acids, and formulates the objectives of the actual work. The strategies are presented in the Main Text, in chronological order, classified as kinetic, dynamic kinetic and sequential kinetic resolution. Mechanistic information of the enzymatic transformations is also available at the end of this overview. The pharmacological importance of the enantiomeric amino acids is given next to their synthesis, in the Main Text, and it is also illustrated in the Conclusions and Outlook sections.


Subject(s)
Amino Acids , Carboxylic Acids , Esters , Lactams , Amines , Amino Acids/chemical synthesis , Amino Acids/chemistry , Amino Acids/pharmacokinetics , Amino Acids/pharmacology , Carboxylic Acids/chemical synthesis , Carboxylic Acids/chemistry , Carboxylic Acids/pharmacokinetics , Carboxylic Acids/pharmacology , Esters/chemical synthesis , Esters/chemistry , Esters/pharmacokinetics , Esters/pharmacology , Hydrolysis , Kinetics , Lactams/chemical synthesis , Lactams/chemistry , Lactams/pharmacokinetics , Lactams/pharmacology , Lipase/metabolism , Stereoisomerism , Pharmaceutical Preparations/chemical synthesis , Pharmaceutical Preparations/chemistry
18.
Org Lett ; 24(29): 5356-5360, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35849750

ABSTRACT

Starting from (R)-phenylglycinol-derived tricyclic lactam 1, the enantioselective synthesis of (-)-cylindricine H is reported. From the stereochemical standpoint, the key steps are the stereoselective generation of the quaternary C10 stereocenter, the stereoselective introduction of the C4 acetoxy and C2 butyl substituents taking advantage of the lactam carbonyl functionality, and the assembly of the pyrrolidine ring with the required functionalized one-carbon chain at C13 by intramolecular opening of an epoxide.


Subject(s)
Heterocyclic Compounds, 3-Ring , Quinolones , Lactams/chemistry , Stereoisomerism
19.
Molecules ; 27(11)2022 Jun 05.
Article in English | MEDLINE | ID: mdl-35684563

ABSTRACT

A study on the reactivity of 3-amino α,ß-unsaturated γ-lactam derivatives obtained from a multicomponent reaction is presented. Key features of the substrates are the presence of an endocyclic α,ß-unsaturated amide moiety and an enamine functionality. Following different synthetic protocols, the functionalization at three different positions of the lactam core is achieved. In the presence of a soft base, under thermodynamic conditions, the functionalization at C-4 takes place where the substrates behave as enamines, while the use of a strong base, under kinetic conditions, leads to the formation of C-5-functionalized γ-lactams, in the presence of ethyl glyoxalate, through a highly diastereoselective vinylogous aldol reaction. Moreover, the nucleophilic addition of organometallic species allows the functionalization at C-3, through the imine tautomer, affording γ-lactams bearing tetrasubstituted stereocenters, where the substrates act as imine electrophiles. Taking into account the advantage of the presence of a chiral stereocenter in C-5 substituted γ-lactams, further diastereoselective transformations are also explored, leading to novel bicyclic substrates holding a fused γ and δ-lactam skeleton. Remarkably, an example of a highly stereoselective formal [3+3] cycloaddition reaction of chiral γ-lactam substrates is reported for the synthesis of 1,4-dihidropyridines, where a non-covalent attractive interaction of a carbonyl group with an electron-deficient arene seems to drive the stereoselectivity of the reaction to the exclusive formation of the cis isomer. In order to unambiguously determine the substitution pattern resulting from the diverse reactions, an extensive characterization of the substrates is detailed through 2D NMR and/or X-ray experiments. Likewise, applications of the substrates as antiproliferative agents against lung and ovarian cancer cells are also described.


Subject(s)
Antineoplastic Agents , Lactams , beta-Lactams/chemical synthesis , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Cycloaddition Reaction , Imines , Lactams/chemical synthesis , Lactams/chemistry , Stereoisomerism , beta-Lactams/chemistry
20.
Org Lett ; 24(24): 4365-4370, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35686872

ABSTRACT

The photoinitiated deaminative [3 + 2] annulation reaction of N-aminopyridinium salts with alkenes for the synthesis of functionalized γ-lactams is described. This transformation shows good functional group tolerance as well as excellent diastereoselectivity. Preliminary studies suggest that the employed N-aminopyridinium salts generate the key amidyl radical intermediates through N-N bond cleavage via a photoinduced single-electron transfer (SET) process. The amidyl radical species would add to the double bond of alkenes, followed by a radical-mediated annulation process, to afford the desired γ-lactams.


Subject(s)
Lactams , Salts , Alkenes/chemistry , Electron Transport , Lactams/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...